Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis.

نویسندگان

  • Jer-Yen Yang
  • Weiya Xia
  • Mickey C-T Hu
چکیده

Genotoxic stress such as ionizing radiation can induce DNA damage and promote cell-cycle arrest or apoptosis through either a p53-dependent or -independent pathway. Recently, members of the FOXO Forkhead transcription factor family have been implicated in playing a role in both DNA repair and apoptosis in mammalian cells that promoted us to examine the role of FOXO transcription factors in ionizing radiation-induced apoptosis. Here, we show that ionizing radiation can promote FOXO3a (FKHRL1) transcriptional activity and protein expression level, and induce nuclear translocation of FOXO3a in Saos2, a p53-null osteosarcoma cell line. Ionizing radiation stimulates expression of apoptosis-inducing proteins such as Fas ligand and the Bcl-2 interacting mediator of cell death (Bim) leading to cellular apoptosis. The observed upregulation of proapoptotic genes and apoptosis in cells without p53 in response to ionizing radiation suggests a novel p53-independent mechanism underlying ionizing radiation-induced apoptosis in cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines.

Paclitaxel is used to treat breast cancers, but the mechanisms by which it induces apoptosis are poorly understood. Consequently, we have studied the role of the FoxO transcription factors in determining cellular response to paclitaxel. Western blotting revealed that in a panel of nine breast cancer cell lines expression of FoxO1a and FoxO3a correlated with the expression of the pro-apoptotic F...

متن کامل

FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons

Developing sympathetic neurons die by apoptosis when deprived of NGF. BIM, a BH3-only member of the BCL-2 family, is induced after NGF withdrawal in these cells and contributes to NGF withdrawal-induced death. Here, we have investigated the involvement of the Forkhead box, class O (FOXO) subfamily of Forkhead transcription factors in the regulation of BIM expression by NGF. We find that overexp...

متن کامل

Molecular and Cellular Pathobiology HTLV-1 bZIP Factor Suppresses Apoptosis by Attenuating the Function of FoxO3a and Altering Its Localization

As the infectious agent causing human adult T-cell leukemia (ATL), the human T-cell leukemia virus type 1 (HTLV-1) virus spreads in vivo primarily by cell-to-cell transmission. However, the factors that determine its transmission efficiency are not fully understood. The viral genome encodes the HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases and is known to promote T-cell prolifer...

متن کامل

Effects of quercetin on ionizing radiation-induced cellular responses in HepG2 cells

Background: Quercetin has been reported to modulate cell proliferation and apoptosis. The present study aimed at identifying whether treatment of ionizing radiation (IR) combined with quercetin induces apoptosis in HepG2 cells. Materials and Methods: HepG2 cells were plated at an appropriate density according to each experimental scale and irradiated with 1, 5 and 10 Gy gamma-rays from a 60Co s...

متن کامل

Regulation of the FOXO3a/Bim signaling pathway by 5,7-dihydroxy-8-nitrochrysin in MDA-MB-453 breast cancer cells

We previously demonstrated that 5,7-dihydroxy-8-nitrochrysin (NOC), a novel synthetic chrysin analog, preferentially inhibits HER-2/neu-overexpressing MDA-MB-453 breast cancer cell growth by inducing apoptosis; however, the precise molecular mechanism was unclear. In this study, we demonstrated that NOC significantly induces apoptosis of MDA-MB-453 cells and that this is primarily mediated thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2006